Command Palette

Search for a command to run...

Page Inspect

https://ann-benchmarks.com/index.html
Internal Links
90
External Links
1
Images
47
Headings
57

Page Content

Title:ANN-Benchmarks
Description:
HTML Size:34 KB
Markdown Size:3 KB
Fetched At:November 18, 2025

Page Structure

h1Info
h1Benchmarking Results
h2Benchmarks for Single Queries
h2Results by Dataset
h3Distance: Angular
h4glove-100-angular (k = 10)
h4glove-25-angular (k = 10)
h4nytimes-256-angular (k = 10)
h3Distance: Euclidean
h4fashion-mnist-784-euclidean (k = 10)
h4gist-960-euclidean (k = 10)
h4sift-128-euclidean (k = 10)
h3Distance: Hamming
h4sift-256-hamming (k = 10)
h4word2bits-800-hamming (k = 10)
h3Distance: Jaccard
h4kosarak-jaccard (k = 10)
h2Results by Algorithm
h4faiss-ivf
h4scann
h4pgvector
h4annoy
h4glass
h4hnswlib
h4BallTree(nmslib)
h4vald(NGT-anng)
h4hnsw(faiss)
h4NGT-qg
h4qdrant
h4n2
h4Milvus(Knowhere)
h4qsgngt
h4faiss-ivfpqfs
h4mrpt
h4redisearch
h4SW-graph(nmslib)
h4NGT-panng
h4pynndescent
h4vearch
h4hnsw(vespa)
h4vamana(diskann)
h4flann
h4luceneknn
h4weaviate
h4puffinn
h4hnsw(nmslib)
h4bruteforce-blas
h4tinyknn
h4NGT-onng
h4elastiknn-l2lsh

Markdown Content

ANN-Benchmarks

ANN Benchmarks

- Home

- Datasets

- Algorithms

- Contact

# Info

ANN-Benchmarks is a benchmarking environment for approximate nearest neighbor algorithms search. This website contains the current benchmarking results. Please visit http://github.com/erikbern/ann-benchmarks/ to get an overview over evaluated data sets and algorithms. Make a pull request on Github to add your own code or improvements to the benchmarking system.

# Benchmarking Results

Results are split by distance measure and dataset. In the bottom, you can find an overview of an algorithm's performance on all datasets. Each dataset is annoted by *(k = ...)*, the number of nearest neighbors an algorithm was supposed to return. The plot shown depicts *Recall* (the fraction of true nearest neighbors found, on average over all queries) against *Queries per second*. Clicking on a plot reveils detailled interactive plots, including approximate recall, index size, and build time.

## Benchmarks for Single Queries
## Results by Dataset
### Distance: Angular

#### glove-100-angular (k = 10)

* * *

#### glove-25-angular (k = 10)

* * *

#### nytimes-256-angular (k = 10)

* * *

### Distance: Euclidean

#### fashion-mnist-784-euclidean (k = 10)

* * *

#### gist-960-euclidean (k = 10)

* * *

#### sift-128-euclidean (k = 10)

* * *

### Distance: Hamming

#### sift-256-hamming (k = 10)

* * *

#### word2bits-800-hamming (k = 10)

* * *

### Distance: Jaccard

#### kosarak-jaccard (k = 10)

* * *

## Results by Algorithm

**Algorithms:**- faiss-ivf
- scann
- pgvector
- annoy
- glass
- hnswlib
- BallTree(nmslib)
- vald(NGT-anng)
- hnsw(faiss)
- NGT-qg
- qdrant
- n2
- Milvus(Knowhere)
- qsgngt
- faiss-ivfpqfs
- mrpt
- redisearch
- SW-graph(nmslib)
- NGT-panng
- pynndescent
- vearch
- hnsw(vespa)
- vamana(diskann)
- flann
- luceneknn
- weaviate
- puffinn
- hnsw(nmslib)
- bruteforce-blas
- tinyknn
- NGT-onng
- elastiknn-l2lsh
- sptag
- ckdtree
- kd
- opensearchknn
- datasketch
- bf

#### faiss-ivf

* * *

#### scann

* * *

#### pgvector

* * *

#### annoy

* * *

#### glass

* * *

#### hnswlib

* * *

#### BallTree(nmslib)

* * *

#### vald(NGT-anng)

* * *

#### hnsw(faiss)

* * *

#### NGT-qg

* * *

#### qdrant

* * *

#### n2

* * *

#### Milvus(Knowhere)

* * *

#### qsgngt

* * *

#### faiss-ivfpqfs

* * *

#### mrpt

* * *

#### redisearch

* * *

#### SW-graph(nmslib)

* * *

#### NGT-panng

* * *

#### pynndescent

* * *

#### vearch

* * *

#### hnsw(vespa)

* * *

#### vamana(diskann)

* * *

#### flann

* * *

#### luceneknn

* * *

#### weaviate

* * *

#### puffinn

* * *

#### hnsw(nmslib)

* * *

#### bruteforce-blas

* * *

#### tinyknn

* * *

#### NGT-onng

* * *

#### elastiknn-l2lsh

* * *

#### sptag

* * *

#### ckdtree

* * *

#### kd

* * *

#### opensearchknn

* * *

#### datasketch

* * *

#### bf

* * *

## Contact

ANN-Benchmarks has been developed by Martin Aumueller (\[email protected\]), Erik Bernhardsson (\[email protected\]), and Alec Faitfull (\[email protected\]). Please use Github to submit your implementation or improvements.