Page Inspect
Internal Links
90
External Links
1
Images
47
Headings
57
Page Content
Title:ANN-Benchmarks
Description:
HTML Size:34 KB
Markdown Size:3 KB
Fetched At:November 18, 2025
Page Structure
h1Info
h1Benchmarking Results
h2Benchmarks for Single Queries
h2Results by Dataset
h3Distance: Angular
h4glove-100-angular (k = 10)
h4glove-25-angular (k = 10)
h4nytimes-256-angular (k = 10)
h3Distance: Euclidean
h4fashion-mnist-784-euclidean (k = 10)
h4gist-960-euclidean (k = 10)
h4sift-128-euclidean (k = 10)
h3Distance: Hamming
h4sift-256-hamming (k = 10)
h4word2bits-800-hamming (k = 10)
h3Distance: Jaccard
h4kosarak-jaccard (k = 10)
h2Results by Algorithm
h4faiss-ivf
h4scann
h4pgvector
h4annoy
h4glass
h4hnswlib
h4BallTree(nmslib)
h4vald(NGT-anng)
h4hnsw(faiss)
h4NGT-qg
h4qdrant
h4n2
h4Milvus(Knowhere)
h4qsgngt
h4faiss-ivfpqfs
h4mrpt
h4redisearch
h4SW-graph(nmslib)
h4NGT-panng
h4pynndescent
h4vearch
h4hnsw(vespa)
h4vamana(diskann)
h4flann
h4luceneknn
h4weaviate
h4puffinn
h4hnsw(nmslib)
h4bruteforce-blas
h4tinyknn
h4NGT-onng
h4elastiknn-l2lsh
Markdown Content
ANN-Benchmarks ANN Benchmarks - Home - Datasets - Algorithms - Contact # Info ANN-Benchmarks is a benchmarking environment for approximate nearest neighbor algorithms search. This website contains the current benchmarking results. Please visit http://github.com/erikbern/ann-benchmarks/ to get an overview over evaluated data sets and algorithms. Make a pull request on Github to add your own code or improvements to the benchmarking system. # Benchmarking Results Results are split by distance measure and dataset. In the bottom, you can find an overview of an algorithm's performance on all datasets. Each dataset is annoted by *(k = ...)*, the number of nearest neighbors an algorithm was supposed to return. The plot shown depicts *Recall* (the fraction of true nearest neighbors found, on average over all queries) against *Queries per second*. Clicking on a plot reveils detailled interactive plots, including approximate recall, index size, and build time. ## Benchmarks for Single Queries ## Results by Dataset ### Distance: Angular #### glove-100-angular (k = 10) * * * #### glove-25-angular (k = 10) * * * #### nytimes-256-angular (k = 10) * * * ### Distance: Euclidean #### fashion-mnist-784-euclidean (k = 10) * * * #### gist-960-euclidean (k = 10) * * * #### sift-128-euclidean (k = 10) * * * ### Distance: Hamming #### sift-256-hamming (k = 10) * * * #### word2bits-800-hamming (k = 10) * * * ### Distance: Jaccard #### kosarak-jaccard (k = 10) * * * ## Results by Algorithm **Algorithms:**- faiss-ivf - scann - pgvector - annoy - glass - hnswlib - BallTree(nmslib) - vald(NGT-anng) - hnsw(faiss) - NGT-qg - qdrant - n2 - Milvus(Knowhere) - qsgngt - faiss-ivfpqfs - mrpt - redisearch - SW-graph(nmslib) - NGT-panng - pynndescent - vearch - hnsw(vespa) - vamana(diskann) - flann - luceneknn - weaviate - puffinn - hnsw(nmslib) - bruteforce-blas - tinyknn - NGT-onng - elastiknn-l2lsh - sptag - ckdtree - kd - opensearchknn - datasketch - bf #### faiss-ivf * * * #### scann * * * #### pgvector * * * #### annoy * * * #### glass * * * #### hnswlib * * * #### BallTree(nmslib) * * * #### vald(NGT-anng) * * * #### hnsw(faiss) * * * #### NGT-qg * * * #### qdrant * * * #### n2 * * * #### Milvus(Knowhere) * * * #### qsgngt * * * #### faiss-ivfpqfs * * * #### mrpt * * * #### redisearch * * * #### SW-graph(nmslib) * * * #### NGT-panng * * * #### pynndescent * * * #### vearch * * * #### hnsw(vespa) * * * #### vamana(diskann) * * * #### flann * * * #### luceneknn * * * #### weaviate * * * #### puffinn * * * #### hnsw(nmslib) * * * #### bruteforce-blas * * * #### tinyknn * * * #### NGT-onng * * * #### elastiknn-l2lsh * * * #### sptag * * * #### ckdtree * * * #### kd * * * #### opensearchknn * * * #### datasketch * * * #### bf * * * ## Contact ANN-Benchmarks has been developed by Martin Aumueller (\[email protected\]), Erik Bernhardsson (\[email protected\]), and Alec Faitfull (\[email protected\]). Please use Github to submit your implementation or improvements.